Blind Source Separation with Optimal Transport Non-negative Matrix Factorization

نویسندگان

  • Antoine Rolet
  • Vivien Seguy
  • Mathieu Blondel
  • Hiroshi Sawada
چکیده

Optimal transport as a loss for machine learning optimization problems has recently gained a lot of attention. Building upon recent advances in computational optimal transport, we develop an optimal transport non-negative matrix factorization (NMF) algorithm for supervised speech blind source separation (BSS). Optimal transport allows us to design and leverage a cost between short-time Fourier transform (STFT) spectrogram frequencies, which takes into account how humans perceive sound. We give empirical evidence that using our proposed optimal transport NMF leads to perceptually better results than Euclidean NMF, for both isolated voice reconstruction and BSS tasks. Finally, we demonstrate how to use optimal transport for cross domain sound processing tasks, where frequencies represented in the input spectrograms may be different from one spectrogram to another.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-Negative Matrix Factorization for Blind Source Separation in Wavelet Transform Domain

This paper describes a new multilevel decomposition method for the separation of convolutive image mixtures. The proposed method uses an Adaptive Quincunx Lifting Scheme (AQLS) based on wavelet decomposition to preprocess the input data, followed by a Non-Negative Matrix Factorization whose role is to unmix the decomposed images. The unmixed images are, thereafter, reconstructed using the inver...

متن کامل

Non-Negative Matrix Factorization and Its Application in Blind Sparse Source Separation with Less Sensors Than Sources

Non-Negative Matrix Factorization (NMF) implies that a given nonnegative matrix is represented by a product of two non-negative matrices. In this paper, a factorization condition (consistent condition) on basis matrix is proposed firstly. For a given consistent basis matrix, although there exist infinite solutions (factorizations) generally, the sparse solution is unique with probability one, w...

متن کامل

Source-filter Based Clustering for Monaural Blind Source Separation

In monaural blind audio source separation scenarios, a signal mixture is usually separated into more signals than active sources. Therefore it is necessary to group the separated signals to the final source estimations. Traditionally grouping methods are supervised and thus need a learning step on appropriate training data. In contrast, we discuss unsupervised clustering of the separated channe...

متن کامل

Beta Divergence for Clustering in Monaural Blind Source Separation

General purpose audio blind source separation algorithms have to deal with a large dynamic range for the different sources to be separated. In our algorithm the mixture is separated into single notes. These notes are clustered to construct the melodies played by the active sources. The non-negative matrix factorization (NMF) leads to good results in clustering the notes according to spectral fe...

متن کامل

Robust Non-Negative Matrix Factorization for Multispectral Data with Sparse Prior

In this work, we study Non-Negative Matrix Factorization (NMF) and compare standard algorithms with an extension to NMF of a Blind Source Separation algorithm using sparsity, Generalized Morphological Component Analysis (GMCA). We also develop a more robust version of GMCA handling more precisely the priors through sub-iterations, which we call rGMCA. We present preliminary results showing GMCA...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1802.05429  شماره 

صفحات  -

تاریخ انتشار 2018